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ABSTRACT

Resonance and irrotational cavity modes as well as waveguide
eigenmodesare usually determined numericcdly(except for a few
structures whose solutions are analytically known). Most of the
methods of analysis end up at a determinental equation, the
zeros of which characterize these modes. Numerically overlooking
some of these zeros is one of the problems which greatly degrade
the accuracy of a field expansion in terms of the corresponding
modes.

In thk contribution it is shown that it is always possible
to find a reactance (or susceptance) function having the same
set of zeros as the original determinentalequation. Thk enables
makinguseof Foster’stheoremto systematicallydeterminethese
zeros.

STATEMENT OF THE PROBLEM

Field expansion in terms of complete sets of modal functions is
the spectral domain versionof dkcretizingfield problems making
them suitablefor numericalsolutions. These modal sets must be
a priori known and for most of the structures of practical im-
portance have to be determinednumerically.We can in general
distinguishbetween two types of structures: Guidkg structures
for which a field expansionis made in termsof the correspondhg
propagation modes ([1]-[7]) and cavity resonatorswhich are cha-
racterizedby both the dkergence-freeresonancemodes and the
curl-free ones ( [8]–[12]). Because waveguidescan be considered
two-dimensionalresonators (applying, e.g., the transversereso-
nance technique[13]), only resonatorproblemswill be considered
here.

An arbitrarilyshaped cavity resonatorcan alwaysbe treated
as a cascaded connectionof line sections,step dkcontinuities and
tapers of waveguides(elon,ga properly selected dkection) w~lch
is short-circuitedat two endplanes. A sphericalresonator,e.g., is
a taper with a semi-circularprofile of circular waveguidesalong
any dhection. Assuming that the eigenmodesof the correspon-
ding waveguidesare known, the generalizedscatteringmatrix of
the cascaded connection is determined(see, e.g., [9]). The num-
ber of waveguidemodes used to expand the field in the different
wavegnidesections is chosento have the same spatial resolution
alloverthe structure. The size of the resultingscatteringmatrix
is determinedby the number of modes used to expand the field
in the waveguidesections adjacent to the end planes. The end

planesarenext short-circuitedresultingin a determinentalequa-
tion, the zerosof whichcorrespondto the resonancefrequencyof
the differentresonance modes. Irrotational modes are similarly
determinedas has been shownin [12].The zerosof the above de-
scribed determinentalequation arein generalvery nonuniformly
distributed along the frequency axis. They usually interlace the
poles of the same determinantin an irregularfashion.

The numerical searchingfor the zeros of a function can be
made by using either a constant or an adaptive searchingstep.
The constant step must be smaller than the smallest difference
betweentwo adjacent zerosor adjacentzero and pole. Otherwise,
the searchingprogram will fail to localize those zeros which are
near to other zeros or poles. Such a searching strategy is ex-
trernlyinefficient.Furthermoreit cannot be guaranteedthat all
zeros are detected because the smallest distance between adja-
cent zerosor adjacent zero and pole is mostly not knowna priori
and consequentlymay be smallerthan the searcldngstep (even
if a very small one is used). The adaptive searchhg step on the
other hand is continuously changed according to the characte-
ristics of the function. Such a searchingstrategy is numerically
very efficientsavinga great dealof cpu time. But one has to keep
in mind that even with a sophisticated control of the searchhg
step some zeros may be overlooked.

Reactance and susceptancefunctions of frequencycorrespon-
ding to losslessstructuresare governedby Foster’s theorem[14].
They are increasingfunctions for all frequencieswith their zeros
and poles taking place alternately.These characteristicsconsi-
derably facilitate the process of searchingfor the zerosof a reac-
tance function whichleads to a significantreductionin cpu time
requirementsresultingin improving the efficiencyof the nume-
rical algorithm. Furthermoreit can be guaranteedthat none of
the zeros is overlooked.

BASIC FORMULATION

In orderto explainthe idea of thk contributionwe consideragain
the cascaded structureconsideredbefore at one of the short cir-
cuited end planes. Instead of determiningthe generalizedscat-
tering matrix, we will consider the corresponding generzdized
impedance matrix, which relates the generalizedvoltage vector
V (representingthe complex amplitudesof the modal transverse
electric fields in the end line just before the short cicuit) to the
generalizedcurrentvector 1 (representingthe complex amplitu-
des of the correspondingmodal transversemagnetic fields) by

V=[z]l . (1)
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The conventional resonance condition is obtained by putting
V = O (due to the short circuit) and looklng for the nonva-
nishing solutions for 1, which correspond to those frequencies
(or wavenumbers)which singularizethe generalizedimpedance
matrix [Z] according to the determinentalequation

Det{[Z]} = O . (2)

Because the quantity Det{[Z]} is not a reactance function, even
if the structure is assumed lossless, Foster’s theorem cannot be
applied. In order to have a reactante function, we will first short-
circuit all modes of the end line section except for a single one
(say the ith one). The input impedance correspondingto the ith
mode is next calculated.

~ = zji’’)~t (3)

It is readily proved that Z~) is related to the ith diagonal ele-
ment ~i of the generalizedadmittance matrix [Y] = [2]-1 by

(4)

For lossless structures, Zy) is purely imaginary.

z~n) = jx~) (5)

where Xy) is a reactance function of frequency (or wavenum-

ber), which is governed by Foster’s theorem. The zeros of Xy)
are the looked for resonancefrequencies(or resonancewavenum-
bers) of the structure.

For a prescribed spatial resolution, we retain a maximum
number of modes M in the field expansion correspondkg to the
end line section considered above. Because i has been arbitra-
rily chosen, we will have a number M of resonance frequency
sets, each represents the zeros of Xy); i = 1,2,. ... M. These
sets must however be identical because these zeros correspond
to short-circuiting all modes (i = 1,2,..., M). On the other
hand, a pole of Xy) cannot be identical with a pole of X~).
The first pole corresponds to open-circuiting the ith mode and
short-circuitingall other modes (including the jth one) while the
second pole corresponds to open-circuiting the jth mode and
short-circuiting all other modes (includlng the ith one).

Another essentialdifferencebetweenthe two reactancefunc-
tions X$n) and X~) is that X?) representsthe structureviewed
from th’eith mode. If the ith mode is propagating and strongly

‘in) will telescope all de-excited in a certain frequency range, Xi
tails of the structure giving rise to a clear picture of it. In thk
case there will be a considerable differencebetween short- and
open-circuiting the ith mode which results in a significant di-
stance between a zero and a neighboring pole belonging to this
frequency range. On the other hand, if the ith mode is evane-
scent or weaklyexcited X7) will give a very fuzzy picture of the
structure.Short- or open-circuitingthe ith mode in this case will
make no differenceand a zero and a pole of Xy) will lie very
near to each other.

A similar discussion holds for considering modes of the line
section at the other short circuit as well as looking into the
structure at an intermediateline section. In the latter case, the
resonancecondition reads

X(in)
*

+xy) no
L.H.S. R.H.S.

(6)

where x@)% ~.~,s, and X?) is the input reactance of the
R.H.S.

ith mode looking into the L.H.S. and R.H.S. of the structure,
respectively.

Let us now consider the resonancefrequenciesup to a maxi-
mum frequency #maXwhich corresponds to the prescribed reso-
lution of the problem. The differentresonancesbelonging to this
frequencyband can be classifiedinto two groups. The resonances
of the first group can be easily obtained as zeros of most of the

‘in) They are well isolated fromdifferentreactance functions X, .
other zeros or poles. The field expansion correspondingto these
modes is characterizedby a more or less balanced contribution
of allmodes (i= 1,2,. ... M) which are either propagating or
evanescentwith an appreciate amplitude at the considered end
plane. The second group grasps those resonancescorresponding
to strongly uneven modal distributions. Some of the conside-
red waveguide modes predominate the others. The resonances
of this group are easily found as zeros of the reactance functi-
ons corresponding to the predominating waveguidemodes. The
corresponding zeros of the reactance functions describing the
weaklyexcited modes arehardly localized due to the presenceof
poles in their vicinity. In order to localize all zerosin the prescri-
bed frequency range, the zeros of all reactance functions X~);
j=l,2, ..., M must be localized and compared to each other.
Resonancescharacterizingthe first class are repeated almost M-
times. Other resonances are less repeated or even present in one

(in)single Xi only.

NUMERICAL RESULTS

The present method has been applied to compute the azi-
muthally independent resonance modes and the irrotational
magnetic eigenfunctions of the short-circuited gyrotron cavity
shown in Fig. 1. For an accurate modal expansion of the electro-
magnetic field inside the cavity some hundreds of these modes
are required ([15]-[17]). In order to obtain a clear picture of the
structurewe have consideredthe input impedance at the R.H.S.
end of the cavity because the Iargest number of propagating
waveguidemodes inside the cavity is found there.

For the actual determination of the eigenvaluesa searching
strategy has been developed which has been proved to be nu-
merically efficient and robust. It alternately localizes the zeros
and the poles of the input reactance X/’”). In order to explain
the procedure let us assume that the initial wavenumber k is
located between the qth pole pq and the qth zero .Zgof X~k)
(pq < k < .zq).In this case, Newton’s procedure is used to com-
pute z~ which works very well for a reactance function. Then,
Newton’s procedure is applied again to the input susceptance
Blfi) = –l/X~) (the zeros of which are the poles of the input
reactance and vice versa) startingfrom .z~+s in order to localize
the (q+ I)th pole Pg+l of X~). After this has been done, the
procedurestarts from the beginning with an initial valuep~+l+8
for k. In this way the zeros of X?) are successively obtained.
If the ith waveguide mode is evanescentor weakly excited at
the R.H.S. end of the cavity Newton’s procedure may skip over
a zero and a pole which are very close to each other. Hence,
the search strategy should be applied to at least all propagating
modes. The reliability of the procedure can be further improved
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if more than one cross section of the cavity is considered. The
increment e should not be confused with a conventional search
step because the only purpose of thk quantity is to ensure that
Newton’s procedure is started at k > p~ (k > .sg)after the qth
pole (zero) has been localized. Therefore, s should be made as
small as possible in order to avoid that any eigenvalues are over-

) looked.
In Tables 1 and 2 numerical results correspondkg to reso-

nance modes and irrotational magnetic eigenfunctions, respec-
tively, are given. A + (-) indicates that a solution is (is not)
detected in the corresponding waveguide mode.

For both resonance modes and the irrotational magnetic ei-
genfunctions the first eigenvahresare found in the dominant
waveguide mode only because all other waveguide modes are
evanescent at these frequencies. Note that in case of the irro-
tational magnetic eigenfunctionsthe TEOOwaveguidemode has
the lowest cutoff wavenumber(kc = O). Thb mode is characte-
rized by a transverselyconstant axial magnetic field only and is
not excited if a resonancemode is considered.

The resonancemode #91 and the irrotatiomd magnetic ei-
genfunction #108 belong to the group of resonances in which
some waveguidemodes predominate others since the correspon-
ding eigenvaluesare only found in the reactance function cor-
responding to one and two waveguidemodes, respectively.Note
that although the eigenvalues#367 and #368 corresponding to
the irrotational magnetic eigenfunctionsare very close to each
other they are presentin the reactance functions corresponding
to a number of waveguidemodes. On the other hand, the irro-
tatiomd magnetic eigenfunction #369, which has been detected
with a conventionalsearch strategy, does not appear in any re-
actance function at the R.H.S. end of the cavity. This solution is
howeverpresent in the reactance function #5 at the L.H.S. end
of the cavity which demonstratesthat it is important to look at
the input impedances at more than one single cross section of
the cavity.

CONCLUSIONS

It has been demonstratedthat it is aIwayspossible to find a re-
actance (or susceptance) function having the same set of zeros
as the original determinentalequation which determinesthe ei-
genvaluesof resonanceand irrotational cavity modes as well as
waveguidemodes. It has been shown how use of Foster’s theo-
rem can be made in order to systematically determine the ze-
ros of such functions. Numericalresultshave been given for the
azimuthally independent resonance modes and the irrotational
magnetic eigenfunctionsof a short-circuitedgyrotron cavity.
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Figure 1: Longitudhml section of a low Q gyrotron cavity.
Parameters:al = 4.7 mm, az = 5.175 mm, as = 5.3 mm, aq = 8.01 mm,
@ = 36°, LL = 3 mm, LI = 18.87 mm, L2 = 9.73 mm, LR = 5 mm.

#of # of waveguidemode

rssonance wavenumber 1 21314 5161718 9

1 0.6123 + - - - - -
2 0.7321 + - - - - - -

3 0.7508 + - - - - -

4 0.7755 + - - - - -

5 0.8074 /+/-l-l-j-l-l-j-
: : : : :. . ! : : .

: : : ; : ::.
251 I 4.0072 [ - -/+1 +/+j -1+/

1+1-1-1 2,52 4.0100 1+1+1+1-[~
253 4,0148 1+1+/t/+1+ + 1- - +

254 4.0228 1+1+]+1+~+1+1-1+1 +
254 / 4.0312 -/+/+1+1+1+1+/+1

#of # of waveguidemode

resonance waven.mber o 1 2 3 4 5 6 7 8 9 10

I 0.0694 + - - - - - - -

2 0.1494 + - - - - - - -

3 0.2341 + - - - - - -
4 0.3166 + - - - - - - -

5 0.3935 + - - - - - - - - -

: : : : : : : : : ; :. 1
105 I 2.2647 ]+)+1+1+/+1+/-1-1- 1-1-
106 / 2.2807 1+1+1+1+1+1+1-1- 1-1-1-
107 12.2900 1+/-l+l+/+l+l-l-l- \-/-

108 ] 2.2973 1+1+1- 1- 1- I I I I 1- I -
109 I 2.3139 I-1+1+1+1+1+1-I-I- 1-1- 1

Table 1: Mapofzeros corresponding to Table2: Mapofzeros corresponding to
the individual waveguide modes the individual waveguide modes
for a resonant cavity mode. for an irrotational magnetic

cavity eigenfunction,
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