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ABSTRACT

Resonance and irrotational cavity modes as well as waveguide
eigenmodes are usually determined numerically (except for a few
structures whose solutions are analytically known). Most of the
methods of analysis end up at a determinental equation, the
zeros of which characterize these modes. Numerically overlooking
some of these zeros is one of the problems which greatly degrade
the accuracy of a field expansion in terms of the corresponding
modes.

In this contribution it is shown that it is always possible
to find a reactance (or susceptance) function having the same
set of zeros as the original determinental equation. This enables
making use of Foster’s theorem to systematically determine these
zeros.

STATEMENT OF THE PROBLEM

Field expansion in terms of complete sets of modal functions is
the spectral domain version of discretizing field problems making
them suitable for numerical solutions. These modal sets must be
a priori known and for most of the structures of practical im-
portance have to be determined numerically. We can in general
distinguish between two types of structures: Guiding structures
for which a field expansion is made in terms of the corresponding
propagation modes ([1]-[7]) and cavity resonators which are cha-
racterized by both the divergence-free resonance modes and the
curl-free ones ([8]-[12]). Because waveguides can be considered
two-dimensional resonators (applying, e.g., the transverse reso-
nance technique [13]), only resonator problems will be considered
here.

An arbitrarily shaped cavity resonator can always be treated
as a cascaded connection of line sections, step discontinuities and
tapers of waveguides (along a properly selected direction) which
is short-circuited at two end planes. A spherical resonator, e.g,., is
a taper with a semi-circular profile of circular waveguides along
any direction. Assuming that the eigenmodes of the correspon-
ding waveguides are known, the generalized scattering matrix of
the cascaded connection is determined (see, e.g., [9]). The num-
ber of waveguide modes used to expand the field in the different
waveguide sections is chosen to have the same spatial resolution
allover the structure. The size of the resulting scattering matrix
is determined by the number of modes used to expand the field
in the waveguide sections adjacent to the end planes. The end
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planes are next short-circuited resulting in a determinental equa-
tion, the zeros of which correspond to the resonance frequency of
the different resonance modes. Irrotational modes are similarly
determined as has been shown in [12]. The zeros of the above de-
scribed determinental equation are in general very nonuniformly
distributed along the frequency axis. They usually interlace the
poles of the same determinant in an irregular fashion.

The numerical searching for the zeros of a function can be
made by using either a constant or an adaptive searching step.
The constant step must be smaller than the smallest difference
between two adjacent zeros or adjacent zero and pole. Otherwise,
the searching program will fail to localize those zeros which are
near to other zeros or poles. Such a searching strategy is ex-
tremly inefficient. Furthermore it cannot be guaranteed that all
zeros are detected because the smallest distance between adja-
cent zeros or adjacent zero and pole is mostly not known a priori
and consequently may be smaller than the searching step (even
if a very small one is used). The adaptive searching step on the
other hand is continuously changed according to the characte-
ristics of the function. Such a searching strategy is numerically
very efficient saving a great deal of cpu time. But one has to keep
in mind that even with a sophisticated control of the searching
step some zeros may be overlooked.

Reactance and susceptance functions of frequency correspon-
ding to lossless structures are governed by Foster’s theorem [14).
They are increasing functions for all frequencies with their zeros
and poles taking place alternately. These characteristics consi-
derably facilitate the process of searching for the zeros of a reac-
tance function which leads to a significant reduction in cpu time
requirements resulting in improving the efficiency of the nume-
rical algorithm. Furthermore it can be guaranteed that none of
the zeros is overlooked.

BASIC FORMULATION

In order to explain the idea of this contribution we consider again
the cascaded structure considered before at one of the short cir-
cuited end planes. Instead of determining the generalized scat-
tering matrix, we will consider the corresponding generalized
impedance matrix, which relates the generalized voltage vector
V (representing the complex amplitudes of the modal transverse
electric fields in the end line just before the short cicuit) to the
generalized current vector I (representing the complex amplitu-
des of the corresponding modal transverse magnetic fields) by

v=[2]I . (1)
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The conventional resonance condition is obtained by putting
V = 0 (due to the short circuit) and looking for the nonva-
nishing solutions for I, which correspond to those frequencies
(or wavenumbers) which singularize the generalized impedance
matrix [Z] according to the determinental equation

Det{[Z]} = 0 (2)

Because the quantity Det{[Z]} is not a reactance function, even
if the structure is assumed lossless, Foster’s theorem cannot be
applied. In order to have a reactance function, we will first short-
circuit all modes of the end line section except for a single one
(say the ith one). The input impedance corresponding to the sth

mode is next calculated.
vi= 2z, 3)

It is readily proved that Z; {in) s related to the ith diagonal ele-

ment Yj; of the generahzed admittance matrix [V] = [Z]™! by
[in) — _1_
7 = & ®

For lossless structures, Zi(in) is purely imaginary.

m) X {in) ( 5)

where Xi(m) is a reactance function of frequency (or wavenum-
ber), which is governed by Foster’s theorem. The zeros of X, i(in)
are the looked for resonance frequencies (or resonance wavenum-
bers) of the structure.

For a prescribed spatial resolution, we retain a maximum
number of modes M in the field expansion corresponding to the
end line section considered above. Because ¢ has been arbitra-
rily chosen, we will have a number M of resonance frequency
sets, each represents the zeros of X f'"); i=1,2,...,M. These
sets must however be identical because these zeros correspond
to short-circuiting all modes (i = 1,2,...,M). On the other
hand, a pole of X,(m) cannot be identical with a pole of X ](m) .
The first pole corresponds to open-circuiting the ith mode and
short-circuiting all other modes (including the jth one) while the
second pole corresponds to open-circuiting the jth mode and
short-circuiting all other modes (including the ith one).

Another essential difference between the two reactance func-
tions X; ) and X is that X, () represents the structure viewed
from the ith mode. If the ¢th mode is propagating and strongly
excited in a certain frequency range, X ,~(m) will telescope all de-
tails of the structure giving rise to a clear picture of it. In this
case there will be a considerable difference between short- and
open-circuiting the ith mode which results in a significant di-
stance between a zero and a neighbouring pole belonging to this
frequency range. On the other hand, if the ith mode is evane-
scent or weakly excited Xi(m) will give a very fuzzy picture of the
structure. Short- or open-circuiting the ith mode in this case will
make no difference and a zero and a pole of Xi(i") will lie very
near to each other.

A similar discussion holds for considering modes of the line
section at the other short circuit as well as looking into the
structure at an intermediate line section. In the latter case, the
resonance condition reads

822

X'(in) + X{(in) =0
R.H.S.

(6)

L.H.S.

where X, ('")| and X ("‘)' is the input reactance of the

tth mode looLkﬁlg into the L.H.S. and R.H.S. of the structure,
respectively.

Let us now consider the resonance frequencies up to a maxi-
mum frequency fi,ax which corresponds to the prescribed reso-
lution of the problem. The different resonances belonging to this
frequency band can be classified into two groups. The resonances
of the first group can be easily obtained as zeros of most of the
different reactance functions Xfm). They are well isolated from
other zeros or poles. The field expansion corresponding to these
modes is characterized by a more or less balanced contribution
of all modes (i = 1,2,..., M) which are either propagating or
evanescent with an appreciate amplitude at the considered end
plane. The second group grasps those resonances corresponding
to strongly uneven modal distributions. Some of the conside-
red waveguide modes predominate the others. The resonances
of this group are easily found as zeros of the reactance functi-
ons corresponding to the predominating waveguide modes. The
corresponding zeros of the reactance functions describing the
weakly excited modes are hardly localized due to the presence of
poles in their vicinity. In order to localize all zeros in the prescri-
bed frequency range, the zeros of all reactance functions X; (")
i=1,2,...,M must be localized and compared to each other
Resonances characterizing the first class are repeated almost M-
times. Other resonances are less repeated or even present in one
single X, i(m) only.

NUMERICAL RESULTS

The present method has been applied to compute the azi-
muthally independent resonance modes and the irrotational
magnetic eigenfunctions of the short-circuited gyrotron cavity
shown in Fig. 1. For an accurate modal expansion of the electro-
magnetic field inside the cavity some hundreds of these modes
are required ([15]-[17]). In order to obtain a clear picture of the
structure we have considered the input impedance at the R.H.S.
end of the cavity because the largest number of propagating
waveguide modes inside the cavity is found there.

For the actual determination of the eigenvalues a searching
strategy has been developed which has been proved to be nu-
merically efficient and robust. It alternately localizes the zeros
and the poles of the input reactance X,Km) . In order to explain
the procedure let us assume that the initial wavenumber k is
located between the gth pole p, and the gth zero z; of X;(m)
(pq < k < 2;). In this case, Newton’s procedure is used to com-
pute z, which works very well for a reactance function. Then,
Newton’s procedure is applied again to the input susceptance
B,gm) =-1/X zﬁm) (the zeros of which are the poles of the input
reactance and vice versa) starting from z; +¢ in order to localize
the (¢ + 1)th pole p,1; of Xi(m). After this has been done, the
procedure starts from the beginning with an initial value pg4q1+¢
for k. In this way the zeros of X ,(m) are successively obtained.
If the ith waveguide mode is evanescent or weakly excited at
the R.H.S. end of the cavity Newton’s procedure may skip over
a zero and a pole which are very close to each other. Hence,
the search strategy should be applied to at least all propagating
modes. The reliability of the procedure can be further improved



if more than one cross section of the cavity is considered. The
increment ¢ should not be confused with a conventional search
step because the only purpose of this quantity is to ensure that
Newton’s procedure is started at k > p; (k > #,) after the gth
pole (zero) has been localized. Therefore, £ should be made as
small as possible in order to avoid that any eigenvalues are over-
looked.

In Tables 1 and 2 numerical results corresponding to reso-
nance modes and irrotational magnetic eigenfunctions, respec-
tively, are given. A + (-) indicates that a solution is (is not)
detected in the corresponding waveguide mode.

For both resonance modes and the irrotational magnetic ei-
genfunctions the first eigenvalues are found in the dominant
waveguide mode only because all other waveguide modes are
evanescent at these frequencies. Note that in case of the irro-
tational magnetic eigenfunctions the TEg waveguide mode has
the lowest cutoff wavenumber (k. = 0). This mode is characte-
rized by a transversely constant axial magnetic field only and is
not excited if a resonance mode is considered.

The resonance mode #91 and the irrotational magnetic ei-
genfunction #108 belong to the group of resonances in which
some waveguide modes predominate others since the correspon-
ding eigenvalues are only found in the reactance function cor-
responding to one and two waveguide modes, respectively. Note
that although the eigenvalues #367 and #368 corresponding to
the irrotational magnetic eigenfunctions are very close to each
other they are present in the reactance functions corresponding
to a number of waveguide modes. On the other hand, the irro-
tational magnetic eigenfunction #369, which has been detected
with a conventional search strategy, does not appear in any re-
actance function at the R.H.S. end of the cavity. This solution is
however present in the reactance function #5 at the L.H.S. end
of the cavity which demonstrates that it is important to look at
the input impedances at more than one single cross section of
the cavity.

CONCLUSIONS

It has been demonstrated that it is always possible to find a re-
actance (or susceptance) function having the same set of zeros
as the original determinental equation which determines the ei-
genvalues of resonance and irrotational cavity modes as well as
waveguide modes. It has been shown how use of Foster’s theo-
rem can be made in order to systematically determine the ze-
ros of such functions. Numerical results have been given for the
azimuthally independent resonance modes and the irrotational
magnetic eigenfunctions of a short-circuited gyrotron cavity.

ACKNOWLEDGEMENT

The authors are indebted to the Deutsche Forschungsgemein-
schaft for financial support.

REFERENCES

[1] A. Wexler, “Solution of waveguide discontinuities by modal
analysis,” IEEE Trans. Microwave Theory Tech., vol. MTT-
15, pp. 508-517, 1967.

823

[2] J. Strube and F. Arndt, “Rigorous hybrid-mode analysis of
the transition from rectangular to shielded dielectric image
guide,” IEEFE Trans. Microwave Theory Tech., vol. MTT-33,
pp. 391401, 1985.

[3] A. S. Omar and K. Schiinemann, “Complex and backward-
wave modes in inhomogeneously filled waveguides,” IEEE
Trans, Microwave Theory Tech., vol. MTT-35, pp. 268-275,
1987.

[4] C. J. Railton and T. Rozzi, “Complex modes in boxed mi-
crostrip,” IEEE Trans. Microwave Theory Tech., vol. MTT-
36, pp. 865-874, 1988.

[5] A. S. Omar and K. Schiinemann, “Analysis of waveguides
with metal inserts,” IEEE Trans. Microwave Theory Tech.,
vol. MTT-37, pp. 1924-1932, 1989.

[6] A. S. Omar and K. Schiinemann, “Application of the ge-
neralized spectral-domain technique to the analysis of rec-
tangular waveguides with rectangular and circular metal in-
serts,” IEEE Trans. Microwave Theory Tech., vol. MTT-39,
pp. 944-952, 1991.

[7] A. Jostingmeier, A. S. Omar, C. Rieckmann, and S. Liitgert,
“Application of the GSD technique to the analysis of slot-
coupled waveguides,” IEEE Trans. Microwave Theory Tech.,
vol. MTT-42, pp. 2139-2148, 1994.

[8] A. S. Omar and K. Schiinemann, “A new approach to
the analysis of inhomogeneously filled cavities,” Proc. 18’th
EuMC (Stockholm), 1988, pp. 527-533.

[9] J. M. Neilson, P. E. Latham, M. Caplan, and W. G. Lawson,
“Determination of the resonant frequencies in a complex ca-
vity using the scattering matrix formulation,” IEEE Trans.
Microwave Theory Tech., vol. MTT-37, pp. 1165-1169, 1989.

[10] F. Alessandri, M. Mongiardo, and R. Sorrentino, “Com-
puter-aided design of beam forming networks for modern
satellite antennas,” IEEE Trans. Microwave Theory Tech.,
vol. MTT-40, pp. 1117-1127, 1992.

[11] A. Jostingmeier and A. S. Omar, “Analysis of the scattering
by dielectric bodies using the SIE formulation,” IEEE Trans.
Microwave Theory Tech., vol. MTT-42, pp. 471-480, 1994.

[12] A. Jéstingmeier, C. Rieckmann, and A. §. Omar, “Rigo-
rous and numerically efficient computation of the irrotatio-
nal electric and magnetic eigenfunctions of complex gyrotron
cavities,” Proc. IEEE MTT-S Symp. (San Diego), pp. 321-
324, 1994.

[13] R. Sorrentino and T. Itoh, “Transverse resonance analysis
of finline discontinuities,” IEEE Trans. Microwave Theory
Tech., vol. MTT-32, pp. 1633~1638, 1984.

[14] R. E. Collin, Foundations for Microwave Engineering. New
York: Mc Graw-Hill, 1966.

(15] A. Jéstingmeier, C. Rieckmann, and A. S. Omar, “Fre-
quency domain analysis of gyrotrons based on complete ei-
genfunction expansions,” Conf. Digest 19°th Int. Conf. on
Infrared and Millimeter Waves (Sendai), pp. 345-346, 1994.



LLN
N
¢
) f S L LLLLLLl L LLLLL
N
§ a a a as RN
N 1 2 3 N
- \ — — ) — a— — — w— v — — — v— wa— — — — \<— -
N
\ N
V777
l e s N
N
N
// A
Ly Ly Lz Ly

Figure 1: Longitudinal section of a low Q gyrotron cavity.
Parameters: a; = 4.7 mm, a3 = 5.175 mm, a3 = 5.3 mm, a4 = 8.01 mm,
© = 36°, Ly, =3 mm, [; = 18.87 mm, L = 9.73 mm, Lr = 5 mm.

# of # of waveguide mode # of # of waveguide mode
resonance { wavenumber } 1 | 2 | 3 | 45|67 |89 resonance | wavenumber [ 0 | 1 1 2 {3 |4 (5]6]|7
1 0.6123 +---1-1-T-1-71- 1 0.0694 + I EEE
2 0.7321 + 1 - - - 2 0.1494 +{ -1 -0-1-1-1-1-
3 0.7508 + -t - 3 0.2341 + - (-7 -1-11-1°-*
4 0.7755 + | - R 4 0.3166 + | -
5 0.8074 -+ - 5 0.3935 + | - -] - -] -
91 2.5516 -1+ S -1-1 -7 105 | 2.2647 +l+l++]+]+ -
92 |2.5503 + |+ + +{-1-1-1- 106 | 2.2807 ] F | F| ] -]
93 2.5663 BEandE I REE 107 | 2.2900 +i -+ l+{+1+
94 2.5703 +l+ [+ - -] -0 108 | 2.2973 + |+ - - -
95 2.5785 +lHl+l+ |+ -] - 109 | 23139 Sl -
251 4.0072 Sl H -+ + 366 4.3602 +i [+ -+ +
252 4.0100 +|l+i+] -+ [+ +] - 367 4.3655 + |+ -+ - + |+
253 4.0148 it || F ]|+ 368 | 4.3659 -t -+
254 4.0228 +|+ |+ |+ [+ - |+ + 369 4.3724 L N N N e
254 4.0312 - + ]+ [+ |+ |+ ]+ ]|+ 370 4.3790 L R SR R A T IR B S I I
Table 1: Map of zeros corresponding to Table 2: Map of zeros corresponding to
the individual waveguide modes the individual waveguide modes
for a resonant cavity mode. for an irrotational magnetic

cavity eigenfunction.
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